You are viewing documentation for Kubernetes version: v1.19
Kubernetes v1.19 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see the latest version.
DNS for Services and Pods
This page provides an overview of DNS support by Kubernetes.
Introduction
Kubernetes DNS schedules a DNS Pod and Service on the cluster, and configures the kubelets to tell individual containers to use the DNS Service's IP to resolve DNS names.
What things get DNS names?
Every Service defined in the cluster (including the DNS server itself) is assigned a DNS name. By default, a client Pod's DNS search list will include the Pod's own namespace and the cluster's default domain. This is best illustrated by example:
Assume a Service named foo in the Kubernetes namespace bar. A Pod running
in namespace bar can look up this service by simply doing a DNS query for
foo. A Pod running in namespace quux can look up this service by doing a
DNS query for foo.bar.
The following sections detail the supported record types and layout that is supported. Any other layout or names or queries that happen to work are considered implementation details and are subject to change without warning. For more up-to-date specification, see Kubernetes DNS-Based Service Discovery.
Services
A/AAAA records
"Normal" (not headless) Services are assigned a DNS A or AAAA record,
depending on the IP family of the service, for a name of the form
my-svc.my-namespace.svc.cluster-domain.example. This resolves to the cluster IP
of the Service.
"Headless" (without a cluster IP) Services are also assigned a DNS A or AAAA record,
depending on the IP family of the service, for a name of the form
my-svc.my-namespace.svc.cluster-domain.example. Unlike normal
Services, this resolves to the set of IPs of the pods selected by the Service.
Clients are expected to consume the set or else use standard round-robin
selection from the set.
SRV records
SRV Records are created for named ports that are part of normal or Headless
Services.
For each named port, the SRV record would have the form
_my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster-domain.example.
For a regular service, this resolves to the port number and the domain name:
my-svc.my-namespace.svc.cluster-domain.example.
For a headless service, this resolves to multiple answers, one for each pod
that is backing the service, and contains the port number and the domain name of the pod
of the form auto-generated-name.my-svc.my-namespace.svc.cluster-domain.example.
Pods
A/AAAA records
In general a pod has the following DNS resolution:
pod-ip-address.my-namespace.pod.cluster-domain.example.
For example, if a pod in the default namespace has the IP address 172.17.0.3,
and the domain name for your cluster is cluster.local, then the Pod has a DNS name:
172-17-0-3.default.pod.cluster.local.
Any pods created by a Deployment or DaemonSet exposed by a Service have the following DNS resolution available:
pod-ip-address.deployment-name.my-namespace.svc.cluster-domain.example.
Pod's hostname and subdomain fields
Currently when a pod is created, its hostname is the Pod's metadata.name value.
The Pod spec has an optional hostname field, which can be used to specify the
Pod's hostname. When specified, it takes precedence over the Pod's name to be
the hostname of the pod. For example, given a Pod with hostname set to
"my-host", the Pod will have its hostname set to "my-host".
The Pod spec also has an optional subdomain field which can be used to specify
its subdomain. For example, a Pod with hostname set to "foo", and subdomain
set to "bar", in namespace "my-namespace", will have the fully qualified
domain name (FQDN) "foo.bar.my-namespace.svc.cluster-domain.example".
Example:
apiVersion: v1
kind: Service
metadata:
  name: default-subdomain
spec:
  selector:
    name: busybox
  clusterIP: None
  ports:
  - name: foo # Actually, no port is needed.
    port: 1234
    targetPort: 1234
---
apiVersion: v1
kind: Pod
metadata:
  name: busybox1
  labels:
    name: busybox
spec:
  hostname: busybox-1
  subdomain: default-subdomain
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    name: busybox
---
apiVersion: v1
kind: Pod
metadata:
  name: busybox2
  labels:
    name: busybox
spec:
  hostname: busybox-2
  subdomain: default-subdomain
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    name: busybox
If there exists a headless service in the same namespace as the pod and with
the same name as the subdomain, the cluster's DNS Server also returns an A or AAAA
record for the Pod's fully qualified hostname.
For example, given a Pod with the hostname set to "busybox-1" and the subdomain set to
"default-subdomain", and a headless Service named "default-subdomain" in
the same namespace, the pod will see its own FQDN as
"busybox-1.default-subdomain.my-namespace.svc.cluster-domain.example". DNS serves an
A or AAAA record at that name, pointing to the Pod's IP. Both pods "busybox1" and
"busybox2" can have their distinct A or AAAA records.
The Endpoints object can specify the hostname for any endpoint addresses,
along with its IP.
Note: Because A or AAAA records are not created for Pod names,hostnameis required for the Pod's A or AAAA record to be created. A Pod with nohostnamebut withsubdomainwill only create the A or AAAA record for the headless service (default-subdomain.my-namespace.svc.cluster-domain.example), pointing to the Pod's IP address. Also, Pod needs to become ready in order to have a record unlesspublishNotReadyAddresses=Trueis set on the Service.
Pod's setHostnameAsFQDN field
Kubernetes v1.19 [alpha]Prerequisites: The SetHostnameAsFQDN feature gate
must be enabled for the
API Server
When a Pod is configured to have fully qualified domain name (FQDN), its hostname is the short hostname. For example, if you have a Pod with the fully qualified domain name busybox-1.default-subdomain.my-namespace.svc.cluster-domain.example, then by default the hostname command inside that Pod returns busybox-1 and the hostname --fqdn command returns the FQDN.
When you set setHostnameAsFQDN: true in the Pod spec, the kubelet writes the Pod's FQDN into the hostname for that Pod's namespace. In this case, both hostname and hostname --fqdn return the Pod's FQDN.
Note:In Linux, the hostname field of the kernel (the
nodenamefield ofstruct utsname) is limited to 64 characters.If a Pod enables this feature and its FQDN is longer than 64 character, it will fail to start. The Pod will remain in
Pendingstatus (ContainerCreatingas seen bykubectl) generating error events, such as Failed to construct FQDN from pod hostname and cluster domain, FQDNlong-FQDNis too long (64 characters is the max, 70 characters requested). One way of improving user experience for this scenario is to create an admission webhook controller to control FQDN size when users create top level objects, for example, Deployment.
Pod's DNS Policy
DNS policies can be set on a per-pod basis. Currently Kubernetes supports the
following pod-specific DNS policies. These policies are specified in the
dnsPolicy field of a Pod Spec.
- "
Default": The Pod inherits the name resolution configuration from the node that the pods run on. See related discussion for more details. - "
ClusterFirst": Any DNS query that does not match the configured cluster domain suffix, such as "www.kubernetes.io", is forwarded to the upstream nameserver inherited from the node. Cluster administrators may have extra stub-domain and upstream DNS servers configured. See related discussion for details on how DNS queries are handled in those cases. - "
ClusterFirstWithHostNet": For Pods running with hostNetwork, you should explicitly set its DNS policy "ClusterFirstWithHostNet". - "
None": It allows a Pod to ignore DNS settings from the Kubernetes environment. All DNS settings are supposed to be provided using thednsConfigfield in the Pod Spec. See Pod's DNS config subsection below. 
Note: "Default" is not the default DNS policy. IfdnsPolicyis not explicitly specified, then "ClusterFirst" is used.
The example below shows a Pod with its DNS policy set to
"ClusterFirstWithHostNet" because it has hostNetwork set to true.
apiVersion: v1
kind: Pod
metadata:
  name: busybox
  namespace: default
spec:
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    imagePullPolicy: IfNotPresent
    name: busybox
  restartPolicy: Always
  hostNetwork: true
  dnsPolicy: ClusterFirstWithHostNet
Pod's DNS Config
Pod's DNS Config allows users more control on the DNS settings for a Pod.
The dnsConfig field is optional and it can work with any dnsPolicy settings.
However, when a Pod's dnsPolicy is set to "None", the dnsConfig field has
to be specified.
Below are the properties a user can specify in the dnsConfig field:
nameservers: a list of IP addresses that will be used as DNS servers for the Pod. There can be at most 3 IP addresses specified. When the Pod'sdnsPolicyis set to "None", the list must contain at least one IP address, otherwise this property is optional. The servers listed will be combined to the base nameservers generated from the specified DNS policy with duplicate addresses removed.searches: a list of DNS search domains for hostname lookup in the Pod. This property is optional. When specified, the provided list will be merged into the base search domain names generated from the chosen DNS policy. Duplicate domain names are removed. Kubernetes allows for at most 6 search domains.options: an optional list of objects where each object may have anameproperty (required) and avalueproperty (optional). The contents in this property will be merged to the options generated from the specified DNS policy. Duplicate entries are removed.
The following is an example Pod with custom DNS settings:
apiVersion: v1
kind: Pod
metadata:
  namespace: default
  name: dns-example
spec:
  containers:
    - name: test
      image: nginx
  dnsPolicy: "None"
  dnsConfig:
    nameservers:
      - 1.2.3.4
    searches:
      - ns1.svc.cluster-domain.example
      - my.dns.search.suffix
    options:
      - name: ndots
        value: "2"
      - name: edns0
When the Pod above is created, the container test gets the following contents
in its /etc/resolv.conf file:
nameserver 1.2.3.4
search ns1.svc.cluster-domain.example my.dns.search.suffix
options ndots:2 edns0
For IPv6 setup, search path and name server should be setup like this:
kubectl exec -it dns-example -- cat /etc/resolv.conf
The output is similar to this:
nameserver fd00:79:30::a
search default.svc.cluster-domain.example svc.cluster-domain.example cluster-domain.example
options ndots:5
Feature availability
The availability of Pod DNS Config and DNS Policy "None" is shown as below.
| k8s version | Feature support | 
|---|---|
| 1.14 | Stable | 
| 1.10 | Beta (on by default) | 
| 1.9 | Alpha | 
What's next
For guidance on administering DNS configurations, check Configure DNS Service